Bioimpedance Spectroscopy and Multifrequency Bioimpedance Approaches for Fluid Compartment Assessment: Theory and Clinical Applications

Carrie P. Earthman, PhD, RD
Associate Professor, Clinical Nutrition, University of Minnesota
Visiting Faculty, VU Medisch Centrum, Amsterdam (2010-2011)

Presentation Objectives

• To understand
 – The underlying theoretical basis of:
 • Bioimpedance spectroscopy (BIS)
 • Multifrequency bioelectrical impedance analysis (MF-BIA)
 – How estimates of fluid volumes by these methods compare to dilution (reference) in various populations

• To gain insights into:
 – The limitations and possibilities of the methods
 – Future research needs

Body Composition Basics

Body Weight = Fat Mass + Fat-Free Mass

Lean Body Mass (LBM) + Bone Mass

Body Cell Mass (BCM) + Extracellular Mass (ECM)

Intracellular Fluid (ICF) + Extracellular Fluid (ECF)

Intracellular Solids + Extracellular Solids
Clinical Relevance and Implications

- **Body cell mass (BCM)**
 - Metabolically active, functional tissue (Moore and Boyden, 1963)
 - Key parameter of nutritional status

- **Fluid distribution:**
 - Detecting fluid overload or dehydration (ECW)
 - Early detection of malnutrition (loss of BCM)
 - Loss of BCM (ICW) with concomitant expansion of ECW could cause TBW and body weight to remain constant, thus masking malnutrition

BIS Devices

<table>
<thead>
<tr>
<th>Device Name</th>
<th>Manufacturer</th>
<th>Country</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydra 4200</td>
<td>Xitron Technologies</td>
<td></td>
<td>5, 50, 100, 200 KHz</td>
</tr>
<tr>
<td>ImpediMed SFB7</td>
<td>ImpediMed*</td>
<td>Pinkenba, Australia & San Diego, CA</td>
<td>5, 50, 100 KHz</td>
</tr>
</tbody>
</table>

MF-BIA Devices

<table>
<thead>
<tr>
<th>Device Name</th>
<th>Manufacturer</th>
<th>Country</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>QuadScan 4000</td>
<td>Bodystat Ltd.</td>
<td>Isle of Man, UK</td>
<td>5, 50, 100 KHz</td>
</tr>
<tr>
<td>Data Input Body Composition</td>
<td>Bodystat Ltd.</td>
<td>Darmstadt, Germany</td>
<td>5, 50, 100 KHz</td>
</tr>
<tr>
<td>Body Comp MF</td>
<td>Akern Srl</td>
<td>Potassieve, Italy</td>
<td>5, 50, 100 KHz</td>
</tr>
</tbody>
</table>
Bioimpedance Basics

- Introduce weak alternating current to body, measure impedance of tissues to flow

Theoretical Basis of Bioimpedance

- Theory:
 - Apply current at low frequency: ECW

 ~5 kHz Extracellular Water (ECW)

- Theory:
 - Apply current at higher frequencies: TBW

 ≥50 kHz Total Body Water (TBW)
Multiple-Frequency Bioelectrical Impedance Analysis (BIA)

- Fixed low and high frequency
 - 1 or 5 kHz to measure ECW
 - 50, 100, 200, or 500 kHz to measure TBW
 (Thomasset, 1963; Deurenberg et al., 1995; Hannan et al., 1994, 1998)

\[V = \frac{p L^2}{R} \]

- Regression of \(Ht^2/R \) (or other) measured at low and high frequency against ECW and TBW measured by dilution methods
 - Equations are population-specific
 Ex: \(TBW (L) = m Ht^2/R_{200} + c \)
 Ex: \(ECW (L) = m Ht^2/R_5 + c \)
 Ex: \(TBW - ECW = ICW \)

- Theoretically able to differentiate ECW vs. ICW, and to quantify BCM

Bioimpedance Spectroscopy (BIS)

- Range of frequencies (~5 - 1000 kHz)

- Biophysical modeling
 - Impedance data over the spectrum is fit to the Cole model through nonlinear least squares curve fitting
 - Cole model terms can then be:
 - Regressed vs. dilution volumes to derive equations (Cole)
 - Once cross-validated these equations can be used to estimate volumes
 - Applied to equations based on Hanai mixture theory (Cole/Hanai)

- Theoretically able to differentiate ECF vs. ICF, and to quantify body cell mass (BCM)
 - ICF ~ BCM

BIS: Step 1 - Cole Modeling

- Key Cole model terms:
 - \(R_c \): Represents ECW resistance and is renamed \(R_e \)
 - \(R_w \): Represents TBW resistance

Figure 3: Diagram of the graphical derivation of the phase angle; its relationship with resistance \(R_e \), resistance \(R_w \), impedance \(Z \), and the frequency of the applied current.

BIS: Step 1 - Cole Modeling (Cole)

- Raw impedance data fit to the Cole model (using nonlinear least squares curve fitting)
 - When R and Xc data at all the frequencies are plotted against each other, an impedance locus plot is created
- BIS device software generates Cole model, characteristic frequency, and other terms

BIS: Step 2 – Mixture Theory (Cole/Hanai)

- Cole model terms can be applied to equations derived from Hanai mixture theory:
 - Assumptions must be made:
 - The body is a conducting medium of water, electrolytes, and lean tissue, in addition to nonconductive material within it (e.g. bone, fat); and effects of non-conducting tissues in ECW and ICW increases their 'apparent' resistivity
 - The body has a constant density
 - Human body = 5 cylinders (arms, legs trunk) so a shape factor (Kb) developed from anatomical measures must be applied
 - R_i can be computed as: 1/ R_i = 1/R_\infty - 1/R_e, but it is not solely representative of ICW resistance because of cell membrane (cm) capacitance

Comparison of BIS/MFBI to References

- Reference for fluid volumes or BCM
 - Deuterium or tritium dilution for TBW
 - Bromide dilution for ECW
 - TBW – ECW = ICW

- Paired t-tests (or other mean level methods)
 - Mean error NS may be deemed good agreement
 - But negative errors can cancel positive errors

- Correlational analysis
 - Linear regression (correlation and SEE statistics)

- Bland-Altman analysis
 - Ways to describe error in the measurements
 - 95% confidence intervals
 - RMSE, mean absolute difference
 - Limits of agreement (mean ± 2SD)
 - SEE
BIS Cole/Hanai (Xitron 4000B device) to Measure ECW Changes in Critically-Ill Patients

Table 1. Extracellular water measurements (L) in 37 patients over 10 days by bromide dilution and terahertz spectroscopy (mean ± SD)

<table>
<thead>
<tr>
<th>Method</th>
<th>Change (L)</th>
<th>r</th>
<th>z value</th>
<th>P valuea</th>
<th>Brønstead</th>
<th>BIS</th>
<th>P valuea</th>
<th>r</th>
<th>z value</th>
<th>P valuea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>31.0 ± 7.5</td>
<td>0.73</td>
<td>6.65</td>
<td>0.0001</td>
<td>36.1 ± 6.4</td>
<td>36.9</td>
<td>4.43</td>
<td>0.0001</td>
<td>6.85</td>
<td>0.0001</td>
</tr>
<tr>
<td>Day 10</td>
<td>31.0 ± 7.5</td>
<td>0.73</td>
<td>6.65</td>
<td>0.0001</td>
<td>36.1 ± 6.4</td>
<td>36.9</td>
<td>4.43</td>
<td>0.0001</td>
<td>6.85</td>
<td>0.0001</td>
</tr>
<tr>
<td>18-Day loss</td>
<td>31.0 ± 7.5</td>
<td>0.73</td>
<td>6.65</td>
<td>0.0001</td>
<td>36.1 ± 6.4</td>
<td>36.9</td>
<td>4.43</td>
<td>0.0001</td>
<td>6.85</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

*N= 37 (29M, 8 F)
18 major trauma
19 serious sepsis

Evaluation of BIS and MFBIA Techniques to Measure ICW (BCM) Changes in HIV Patients Undergoing Anabolic Therapy

<table>
<thead>
<tr>
<th>Method</th>
<th>Change (L)</th>
<th>r</th>
<th>z value</th>
<th>P valuea</th>
<th>Mean BMI (kg/m²)</th>
<th>MFBIA (Hannon 500 kHz TBW – Hannon 5 KHz ECW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>0.1 ± 1.2</td>
<td>0.91</td>
<td>1.71</td>
<td>0.0001</td>
<td>39.2 ± 8.1</td>
<td>0.58 ± 0.15</td>
</tr>
<tr>
<td>Day 10</td>
<td>0.1 ± 1.2</td>
<td>0.91</td>
<td>1.71</td>
<td>0.0001</td>
<td>39.2 ± 8.1</td>
<td>0.58 ± 0.15</td>
</tr>
<tr>
<td>18-Day loss</td>
<td>0.1 ± 1.2</td>
<td>0.91</td>
<td>1.71</td>
<td>0.0001</td>
<td>39.2 ± 8.1</td>
<td>0.58 ± 0.15</td>
</tr>
</tbody>
</table>

67% of subjects’ BIS Cole/Hanai values and 52% of subjects’ MFBIA (Hannon 500 kHz TBW – Hannon 5 KHz ECW) values fell within ±1.5L of reference-measured ΔICW

Errors in BIS Cole/Hanai Method are Related to Degree of Overweight...
Errors in BIS Cole/Hanai Method are Related to Degree of Weight and Fat Loss

N=10F, pre- and 2-wk, 3-mo, and 1-yr post-gastric banding
Mean BMI: 49 kg/m²

- Cole/Hanai method overestimated TBW loss in weight losing subjects
 r= .69 (all intervals)
 Mean error: -2.4L
 Limits of agreement: -8.1 to 3.4L
 Bias was related to wt loss: r=-.64 and to FM loss: r=.66

Correction for BMI Improves Estimates by BIS: Body Composition Spectroscopy

| Table 4. Agreement between TBW_{est} and TBW_{BCS} for each centre. |
|------------------------|-----------------|-----------------|
| Centre | r² | Mean ± SD (L) |
| Kiel | 0.91 | -0.27 ± 2.18 |
| NY | 0.59 | 1.18 ± 2.56 |
| Oldenburg | 0.94 | -1.56 ± 1.50 |

All 32 were Dialysis pts

Comparing Cole/Hanai method vs. BCS:
SEE for TBW decreased by 0.6 L for all subjects, and by 1.2L for 24 subjects with extreme BMIs (<20 or >30)

Unique Applications of MF-BIA and BIS

- Monitoring fluid status in dialysis patients
 - Segmental BIS (Cole/Hanai with segment specific resistivity constants) can be used to detect fluid volume changes in peritoneal and hemo-dialysis patients
 - Segmental lower leg MF-BIA to obtain impedance at 200 and 5 KHz (Z_{200}/Z_{5}) has been used to predict dry weight post-HD
 - Model using wrist-ankle BIS ECF and predicted population ECF to achieve dry weight, with further refinements

- Predicting disease severity
 - In 38 patients undergoing major abdominal surgery, Z_{200}/Z_{5} was significantly higher in the 20 subjects who developed post-operative edema

- Evaluating lymphedema
 - The BIS Cole method has been validated against electro-optical perometry to evaluate lymphedema in women
Summary: Clinical Applications

- Although MF-BIA (with an appropriate equation) and BIS techniques can provide reasonably accurate whole body fluid measures in healthy normal-weight people, there have been mixed results in clinical populations (variability at individual level particularly problematic for clinic use)

- BIS Cole/Hanai method
 - Has best potential, but needs refinement particularly for populations with abnormal body geometry (e.g. obesity)
 - May be better for measuring changes (>2 kg) in patients with stable fluid and electrolyte balance, e.g. HIV
 - Improved results with BMI-correction (body composition spectroscopy)

- Both MF-BIA and BIS are being used by some dialysis centers for monitoring fluid status and dry weight

Future Directions

- Further refinement of the BIS Cole/Hanai method needed
 - Population-specific resistivity constants and other adjustments may improve the accuracy of the BIS Cole/Hanai method
 - Segmental approach may improve estimates in patients with abnormal body geometry or hydration status

- Additional research is needed to evaluate use of the impedance ratio \(Z_{200}/Z_2\) for assessing dry weight and for predicting disease severity

- Development and validation of algorithms for using MF-BIA or BIS data to identify malnourished patients (e.g. Fuzzy Logic System, Wieskotten et al, 2008. Physiol Meas. 29:639-654)

- With refinement, these methods can provide information that may be used to enhance nutritional assessment

Bioimpedance in Clinical Practice

Bioelectrical impedance analysis—part II: utilization in clinical practice

If MF-BIA: Choose an appropriate, validated equation

For longitudinal measures, same conditions and same technician

Ideal testing conditions
 – No caffeine, alcohol, and exercise – 24 hours before testing
 – FAST (NPO except water) 8 hours before testing
 – Remove metal from clothing and body
 – Void bladder
 – Arms separated from trunk by ~30°, legs separated by ~45°
 – Measurements recommended to be taken at 10 minutes after assuming a supine position; most important to standardize timing for longitudinal measures

Clean skin surface well with alcohol; subject should not use lotion or oils prior to measurement

Electrodes should be placed ≥ 5 cm apart

Measure and record distance between electrodes to ensure consistency in placement for follow-up measurements

Thank you!